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Abstract. We apply the perturbative chiral quark model at one loop to analyze the electromagnetic form
factors of the baryon octet. The analytic expressions for baryon form factors, which are given in terms
of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, axial nucleon
coupling, strong pion-nucleon form factor), and the numerical results for baryon magnetic moments, charge
and magnetic radii are presented. Our results are in good agreement with experimental data.

PACS. 12.39.Ki Relativistic quark model – 13.40.Gp Electromagnetic form factors – 14.20.Dh Protons
and neutrons – 14.20.Jn Hyperons

1 Introduction

The study of the electromagnetic form factors of baryons is
a very important first step in understanding their internal
structure. At present, electromagnetic form factors and
related properties (magnetic moments, charge and mag-
netic radii) of the nucleon have been measured precisely,
but for the hyperons data rarely exist with the exception
of the magnetic moments. Recently, the charge radius of
the Σ− has been measured [1,2] and therefore gives a first
estimate of the charge form factor of the hyperon at low
momentum transfers.

In refs. [3–8] we developed the perturbative chiral
quark model (PCQM) for the study of baryon properties:
electromagnetic form factors of the nucleon, low-energy
meson-baryon scattering and σ-terms, electromagnetic ex-
citation of nucleon resonances, etc. In ref. [3] the PCQM
has been applied to study the electromagnetic form factors
of the nucleon and the results obtained are in good agree-
ment with experimental data. In this paper we extend the
PCQM to study the electromagnetic form factors of hyper-
ons and give predictions with respect to future measure-
ments of their magnetic moments, radii and the momen-
tum dependence of form factors. We proceed as follows. In
sect. 2 we describe the basic notions of our approach. In
sect. 3 we present the analytic expressions for the charge
and magnetic form factors of the baryon octet. Numerical
results for their magnetic moments, charge and magnetic
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radii, and the momentum dependence of the form factors
are discussed in sect. 4. Section 5 contains a summary.

2 The perturbative chiral quark model

2.1 Effective Lagrangian and zeroth-order properties

The following considerations are based on the perturba-
tive chiral quark model (PCQM) [3,4]. The PCQM is a
relativistic quark model which is based on an effective La-
grangian Leff = Llininv+LχSB. The Lagrangian includes the
linearized chiral invariant term Llininv and a mass term LχSB

which explicitly breaks chiral symmetry:

Llininv = ψ̄(x)
[
i� ∂ − γ0V (r)− S(r)

]
ψ(x)

+
1
2

N∑
i=1

[∂µΦi(x)]2 − ψ̄(x)S(r)iγ5
Φ̂(x)
F

ψ(x), (1)

LχSB = −ψ̄(x)Mψ(x)− B

2
Tr[Φ̂2(x)M], (2)

where r = |x|; ψ is the quark field, Φ̂ is the matrix of
the pseudoscalar mesons, S(r) and V (r) are scalar and
vector components of an effective, static potential provid-
ing quark confinement, M = diag{m̂, m̂,ms} is the mass
matrix of current quarks (we restrict to the isospin sym-
metry limit with mu = md = m̂), B is the quark conden-
sate parameter and F = 88 MeV is the pion decay con-
stant in the chiral limit. We rely on the standard picture
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of chiral-symmetry breaking and for the masses of pseu-
doscalar mesons we use the leading term in chiral expan-
sion (i.e. linear in the current quark mass): M2

π = 2m̂B,
M2

K = (m̂ +ms)B, M2
η =

2
3 (m̂ + 2ms)B. Meson masses

satisfy the Gell-Mann–Oakes–Renner and the Gell-Mann–
Okubo relation 3M2

η +M2
π = 4M2

K . In the evaluation we
use the following set of QCD parameters: m̂ = 7 MeV,
ms/m̂ = 25 and B =M2

π+/(2m̂) = 1.4 GeV.
To describe the properties of baryons which are mod-

elled as bound states of valence quarks surrounded by a
meson cloud we formulate perturbation theory. In our ap-
proach the mass (energy) mcoreN of the three-quark core
of the nucleon is related to the single-quark energy E0 by
mcoreN = 3E0. For the unperturbed three-quark state we
introduce the notation |φ0〉 with the appropriate normal-
ization 〈φ0|φ0〉 = 1. The single-quark ground-state energy
E0 and wave function (WF) u0(x) are obtained from the
Dirac equation

[−iα · ∇+ βS(r) + V (r)− E0]u0(x) = 0. (3)

The quark WF u0(x) belongs to the basis of potential
eigenstates (including excited quark and antiquark solu-
tions) used for expansion of the quark field operator ψ(x).
Here we restrict the expansion to the ground-state con-
tribution with ψ(x) = b0u0(x) exp(−iE0t), where b0 is
the corresponding single-quark annihilation operator. In
eq. (3) the current quark mass is not included to sim-
plify our calculational technique. Instead, we consider the
quark mass term as a small perturbation.

For a given form of the potentials S(r) and V (r), the
Dirac equation (3) can be solved numerically. Here, for the
sake of simplicity, we use a variational Gaussian ansatz for
the quark wave function given by the analytical form:

u0(x) = N exp
[
− x2

2R2

] (
1

iρσ·x
R

)
χsχfχc, (4)

where N = [π3/2R3(1 + 3ρ2/2)]−1/2 is a constant fixed
by the normalization condition

∫
d3xu†

0(x)u0(x) ≡ 1; χs,
χf , χc are the spin, flavor and color quark wave functions,
respectively. Our Gaussian ansatz contains two model pa-
rameters: the dimensional parameter R and the dimen-
sionless parameter ρ. The parameter ρ can be related to
the axial coupling constant gA calculated in zeroth-order
(or 3q-core) approximation:

gA =
5
3

(
1− 2ρ2

1 + 3
2ρ
2

)
=
5
3
1 + 2γ
3

, (5)

where γ = 9gA/10 − 1/2. The parameter R can be phys-
ically understood as the mean radius of the three-quark
core and is related to the charge radius

〈
r2E

〉p
LO

of the
proton in the leading-order (LO) approximation as

〈
r2E

〉p
LO

=
3R2

2
1 + 5

2ρ
2

1 + 3
2ρ
2
= R2

(
2− γ

2

)
. (6)

In our calculations we use the value gA = 1.25. We there-
fore have only one free parameter, that is R. In the fi-
nal numerical evaluation, R is varied in the region from

0.55 fm to 0.65 fm, which is sufficiently large to justify
perturbation theory.

In the PCQM confinement is introduced as a static
mean-field potential, hence covariance cannot be fulfilled.
As a consequence, matrix elements are frame dependent:
both Galilei invariance of the zeroth-order baryon wave
functions and Lorentz boost effects, when considering fi-
nite momenta transfers, are neglected. Approximate tech-
niques [9,10] have been developed to account for these de-
ficiencies in static-potential models. However, these tech-
niques do not always agree and lead to further ambigui-
ties in model evaluations. Furthermore, existing Galilean
projection techniques are known to lead to conflicts with
chiral-symmetry constraints [4]. In the present paper we
completely neglect the study of these additional model-
dependent effects. We focus on the role of meson loops,
which, as was shown in the context of the cloudy bag
model [10], are not plagued by these additional uncertain-
ties.

2.2 Renormalization of the PCQM and perturbation
theory

We consider perturbation theory up to one meson loop
and up to terms linear in the current quark mass. The
formalism utilizes a renormalization technique, which, by
introduction of counterterms, effectively reduces the num-
ber of Feynman diagrams to be evaluated. For details of
this technique we refer to ref. [3]. Here we briefly describe
the basic ingredients relevant for the further discussion.
We define the renormalized current quark masses, m̂r and
mr

s and the renormalization constants, Ẑ and Zs as

m̂r = m̂− 3
400γ

( gA
πF

)2 ∫ ∞

0

dpp4FπNN (p2)

×
{

9
w2π(p2)

+
6

w2K(p2)
+

1
w2η(p2)

}
, (7)

mr
s = ms − 3

400γ

( gA
πF

)2 ∫ ∞

0

dpp4FπNN (p2)

×
{

12
w2K(p2)

+
4

w2η(p2)

}
, (8)

Ẑ = 1− 3
400

( gA
πF

)2 ∫ ∞

0

dpp4FπNN (p2)

×
{

9
w3π(p2)

+
6

w3K(p2)
+

1
w3η(p2)

}
, (9)

Zs = 1− 3
400

( gA
πF

)2 ∫ ∞

0

dpp4FπNN (p2)

×
{

12
w3K(p2)

+
4

w3η(p2)

}
. (10)

For a meson with three-momentum p, the meson energy
is wΦ(p2) =

√
M2

Φ + p2 with p = |p| and FπNN (p2) is
the πNN form factor normalized to unity at zero recoil
(p = 0):

FπNN (p2)=exp
(
−p2R2

4

){
1+

p2R2

8

(
1− 5

3gA

)}
. (11)
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By adding the renormalized current quark mass term to
the Dirac equation (3) we obtain the renormalized quark
field ψr as

ψr
i (x;m

r
i ) = b0u

r
0(x;m

r
i ) exp[−iEr

0 (m
r
i )t], (12)

where i is the flavor SU(3) index. The renormalized single-
quark WF ur0(x;m

r
i ) and energy Er

0 (m
r
i ) are related to the

bare expressions u0(x) and E0 as
ur0(x;m

r
i ) = u0(x) + δu0(x;mr

i ), (13)
Er
0 (m

r
i ) = E0 + δEr

0 (m
r
i ), (14)

where

δu0(x;mr
i ) =

mr
i

2
ρR

1 + 3
2ρ
2

×
( 1
2 +

21
4 ρ
2

1 + 3
2ρ
2

− x2

R2
+ γ0

)
u0(x), (15)

δEr
0 (m

r
i ) = γmr

i . (16)

Introduction of the electromagnetic field Aµ is accom-
plished by adding the kinetic-energy term and by stan-
dard minimal substitution in the Lagrangian of eq. (1)
and eq. (2) with

∂µψ
r −→ Dµψ

r = ∂µψ
r + ieQAµψ

r, (17)

∂µΦi −→ DµΦi = ∂µΦi + e

[
f3ij +

f8ij√
3

]
AµΦj , (18)

whereQ is the quark charge matrix and fijk are the totally
antisymmetric structure constants of SU(3). The renor-
malized effective Lagrangian is obtained from the original
one of eqs. (1) and (2) by replacing ψ with ψr, adding
the counterterms and by standard minimal substitution.
From this we derive the electromagnetic renormalized cur-
rent operator as

jµr = jµψr + jµΦ + δjµψr . (19)

It contains the quark component jµψr , the charged-meson
component jµΦ, and the contribution of the counterterm
δjµψr :

jµψr = ψ̄rγµQψr

=
1
3

[
2ūrγµur − d̄rγµdr − s̄rγµsr

]
, (20)

jµΦ =
[
f3ij +

f8ij√
3

]
Φi∂

µΦj

= [π−i∂µπ+ − π+i∂µπ−

+K−i∂µK+ −K+i∂µK−], (21)

δjµψr = ψ̄r(Z − 1)γµQψr

=
1
3
[2ūr(Ẑ − 1)γµur − d̄r(Ẑ − 1)γµdr

−s̄r(Zs − 1)γµsr]. (22)

Following the Gell-Mann and Low theorem, we define
the expectation value of an operator Ô for the renormal-
ized PCQM by

〈Ô〉 = B

〈
φ0

∣∣∣∣
∞∑
n=0

in

n!

∫
iδ(t1)d4x1 . . . d4xn

×T [Lstrr (x1) . . .Lstrr (xn)Ô]
∣∣∣∣φ0

〉B

c

. (23)

In eq. (23) the superscript B indicates that the matrix
elements are projected on the respective baryon states, the
subscript c refers to contributions from connected graphs
only and the renormalized strong-interaction Lagrangian
Lstrr , which is treated as a perturbation, is defined as

Lstrr = LstrI + δLstr, (24)

where

LstrI = −ψ̄r(x)iγ5
Φ̂(x)
F

S(r)ψr(x). (25)

δLstr is the strong-interaction part of the counterterms
(see details in ref. [3]). We evaluate eq. (23) at one loop to
the order o(1/F 2) using Wick’s theorem and the appro-
priate propagators. For the quark field we use a Feymann
propagator for a fermion in a binding potential with

iGψ(x, y) = 〈0|T{ψ(x)ψ̄(y)}|0〉 (26)

= θ(x0 − y0)
∑
α

uα(x)ūα(y)e−iEα(x0−y0)

−θ(y0 − x0)
∑
β

vβ(x)v̄β(y)eiEβ(x0−y0).

Up to the order of accuracy we are working in, it is suffi-
cient to use Gψ(x, y) instead of Gψr (x, y) where renormal-
ized quark fields are used. By restricting the summation
over intermediate quark states to the ground state we get

iGψ(x, y) → iG
(0)
ψ (x, y)

= u0(x)ū0(y)e−iE0(x0−y0)θ(x0 − y0). (27)

Such a truncation can be considered as an additional reg-
ularization of the quark propagator, where in the case of
SU(2)-flavor intermediate baryon states in loop diagrams
are restricted to N and ∆. From our previous works [3–8]
we conclude that the use of a truncated quark propa-
gator leads to a reasonable description of experimental
data. In ref. [8] we included, for the first time, excited
quark states in the propagator of eq. (26) and analyzed
their influence on the matrix elements for the N -∆ transi-
tions considered. We included the following set of excited
quark states: the first p-states (1p1/2 and 1p3/2 in the
non-relativistic notation) and the second excited states
(1d3/2, 1d5/2 and 2s1/2). Again, we solved the Dirac equa-
tion analytically for the same form of the effective poten-
tial Veff(r) = S(r) + γ0V (r) as was done for the ground
state. The corresponding expressions for the wave func-
tions of the excited quark states are given in the appendix.
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In ref. [8] we demonstrated that the excited quark states
can increase the contribution of the loop diagrams but in
comparison to the leading-order (three-quark core) dia-
gram this effect was of the order of 10%. In the context
of the electromagnetic properties of baryons, we also es-
timated the effect of excited states, which again is of the
order of 10%. However, there are quantities (like, e.g., the
charge radius of neutron) which are dominated by higher-
order effects. Particularly, in the SU(2)-flavor limit there
is no three-quark core diagram contributing to this quan-
tity. Only meson-loop diagrams contribute to the neutron
charge radius in the context of the PCQM and, therefore,
the effects of excited states can be essential. In this pa-
per (see sect. 4) we discuss the effects of excited states
only for the neutron charge radius. We found that these
effects considerably improved our prediction for the neu-
tron charge radius close to the experimental result.

For the meson fields we use the free Feymann propa-
gator for a boson with

i∆ij(x− y) = 〈0|T{Φi(x)Φj(y)}|0〉

= δij

∫
d4k
(2π)4i

exp[−ik(x− y)]
M2

Φ − k2 − iε
. (28)

3 Electromagnetic form factors of the baryon
octet

We define the electromagnetic form factors of the baryon
in the Breit frame, where gauge invariance is fulfilled [3].
In this frame the initial momentum of the baryon is p =
(E,−q/2+∆), the final momentum is p′ = (E, q/2+∆),
and the four-momentum of the photon is q = (0, q) with
p′ = p + q. For identical baryons we have ∆ = 0. With
the space-like momentum transfer squared given as Q2 =
−q2 = q2, we define the Sachs charge GB

E and magnetic
GB

M form factors of the baryon as〈
B′

s′

(
q

2
+∆

) ∣∣∣∣ J0(0)
∣∣∣∣Bs

(
− q

2
+∆

)〉
=

χ†
B′

s′
χBs

GB
E(Q

2), (29)〈
B′

s′

(
q

2
+∆

) ∣∣∣∣ J(0)
∣∣∣∣Bs

(
− q

2
+∆

)〉
=

χ†
B′

s′

iσB × q

mB +mB′
χBs

GB
M (Q

2). (30)

Here, J0(0)and J(0) are the time and space components
of the electromagnetic current operator; χBs

and χ†
B′

s′
are

the baryon spin WF in the initial and final states; σB is
the baryon spin matrix. Electromagnetic gauge invariance
both on the Lagrangian and the baryon level is fulfilled in
the Breit frame [3].

At zero recoil (q2 = 0), the Sachs form factors satisfy
the following normalization conditions:

GB
E(0) = QB , GB

M (0) = µB , (31)

where QB and µB are charge and magnetic moment of the
baryon octet, respectively.

Fig. 1. Diagrams contributing to the charge and mag-
netic form factors of the baryon octet: three-quark dia-
gram (a), three-quark counterterm diagram (b), meson-cloud
diagram (c), vertex-correction diagram (d), and meson-in-flight
diagram (e).

The charge and magnetic radii of baryons are given by

〈r2E,M 〉B = − 6
GB

E,M (0)
d
dQ2

GB
E,M (Q

2)
∣∣∣∣
Q2=0

. (32)

For neutral particles (QB = 0) the charge radius is defined
by

〈r2E〉B = −6 d
dQ2

GB
E(Q

2)
∣∣∣∣
Q2=0

. (33)

In the PCQM the charge and magnetic form factors of the
baryon octet are given as

χ†
s′χsG

B
E(Q

2) =〈
φ0

∣∣∣∣
2∑

n=0

in

n!

∫
δ(t) d4xd4x1 . . . d4xne−iq·x

×T [Lstrr (x1) . . .Lstrr (xn)j0r (x)]
∣∣∣∣φ0

〉B

c

, (34)

χ†
s′

iσB × q

mB +mB′
χsG

B
M (Q

2) =

〈
φ0

∣∣∣∣
2∑

n=0

in

n!

∫
δ(t) d4xd4x1 . . . d4xne−iq·x

×T [Lstrr (x1) . . .Lstrr (xn)jr(x)]
∣∣∣∣φ0

〉B

c

. (35)

The relevant diagrams contributing to the charge and ma-
gnetic form factors are indicated in fig. 1. In the following
we give the analytical expressions for the respective dia-
grams.
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1. Three-quark diagram (3q):

GB
E,M (Q

2)
∣∣∣∣
3q

= GB
E,M (Q

2)
∣∣∣∣
LO

3q

+GB
E,M (Q

2)
∣∣∣∣
NLO

3q

, (36)

where GB
E,M (Q

2)
∣∣∣∣
LO

3q

are the leading-order (LO) terms

of the three-quark diagram evaluated with the unper-

turbed quark WF u0(x);GB
E,M (Q

2)
∣∣∣∣
NLO

3q

is a correction

due to the modification of the quark WF u0(x) →
ur0(x;m

r
i ) referred to as next-to-leading order (NLO):

GB
E(Q

2)
∣∣∣∣
LO

3q

= aB1 G
p
E(Q

2)
∣∣∣∣
LO

3q

, (37)

GB
M (Q

2)
∣∣∣∣
LO

3q

= bB1
mB

mN
Gp

M (Q
2)

∣∣∣∣
LO

3q

, (38)

GB
E(Q

2)
∣∣∣∣
NLO

3q

=
(
aB2 + aB3 ε

)
Gp

E(Q
2)

∣∣∣∣
NLO

3q

, (39)

GB
M (Q

2)
∣∣∣∣
NLO

3q

=
(
bB2 + bB3 ε

) mB

mN
Gp

M (Q
2)

∣∣∣∣
NLO

3q

, (40)

where

Gp
E(Q

2)
∣∣∣∣
LO

3q

=exp
(
−Q2R2

4

)(
1− Q2R2ρ2

4(1 + 3
2ρ
2)

)
, (41)

Gp
E(Q

2)
∣∣∣∣
NLO

3q

= exp
(
−Q2R2

4

)
m̂r Q2R3ρ

4
(
1 + 3

2ρ
2
)2

×
(
1 + 7ρ2 + 15

4 ρ
4

1 + 3
2ρ
2

−Q2R2

4
ρ2

)
, (42)

Gp
M (Q

2)
∣∣∣∣
LO

3q

= exp
(
−Q2R2

4

)
2mNρR

1 + 3
2ρ
2
, (43)

Gp
M (Q

2)
∣∣∣∣
NLO

3q

= Gp
M (Q

2)
∣∣∣∣
LO

3q

m̂rRρ

1 + 3
2ρ
2

×
(
Q2R2

4
− 2− 3

2ρ
2

1 + 3
2ρ
2

)
, (44)

and ε = mr
s/m̂

r. The constants aBi and bBi are given in
table 1 and table 2, respectively. When using isospin
symmetry we use for mB , the baryon masses, the fol-

Table 1. The constants aB
i for the charge form factors GB

E of
the baryon octet.

p n Σ+ Σ0 Σ− Λ Ξ0 Ξ− Σ0Λ

a1 1 0 1 0 −1 0 0 −1 0

a2 1 0 4
3

1
3

− 2
3

1
3

2
3

− 1
3

0

a3 0 0 − 1
3

− 1
3

− 1
3

− 1
3

− 2
3

− 2
3

0

a4 1 −1 2 0 −2 0 1 −1 0

a5 2 1 1 0 −1 0 −1 −2 0

a6
1
2

1 0 1
2

1 1
2

0 1
2

0

a7 −1 −1 − 1
3

− 1
3

− 1
3

− 1
3

1
3

1
3

0

a8
1
6

0 0 − 1
6

− 1
3

− 1
6

− 1
3

− 1
2

0

Table 2. The constants bB
i for the magnetic form factors GB

M

of the baryon octet.

p n Σ+ Σ0 Σ− Λ Ξ0 Ξ− Σ0Λ

b1 1 − 2
3

1 1
3

− 1
3

− 1
3

− 2
3

− 1
3

−
√

3
3

b2 1 − 2
3

8
9

2
9

− 4
9

0 − 2
9

1
9

−
√

3
3

b3 0 0 1
9

1
9

1
9

− 1
3

− 4
9

− 4
9

0

b4 1 −1 4
5

0 − 4
5

0 − 1
5

1
5

− 2
√

3
5

b5
4
5

− 1
5

1 3
5

1
5

− 3
5

−1 − 4
5

−
√

3
5

b6
1
18

− 2
9

0 − 1
9

− 2
9

0 0 1
18

−
√

3
18

b7
1
9

1
9

5
27

5
27

5
27

− 1
9

− 5
27

− 5
27

0

b8 − 1
18

1
27

− 2
27

− 1
27

0 2
27

1
9

5
54

√
3

54

b9 1 −1 0 0 0 0 0 0 −
√

3
3

b10 0 0 1 1 1 −1 −1 −1 0

lowing values

mN = mp = mn = 0.938 GeV,
mΣ = mΣ± = mΣ0 = 1.189 GeV,
mΛ = 1.115 GeV, (45)
mΞ = mΞ0 = mΞ− = 1.321 GeV,

mΣ0Λ =
1
2
(mΣ +mΛ) = 1.152 GeV .

2. Three-quark counterterm (CT):

GB
E(Q

2)
∣∣∣∣
CT

=
[
aB2 (Ẑ − 1)

+aB3 (Zs − 1)
]
Gp

E(Q
2)

∣∣∣∣
LO

3q

, (46)

GB
M (Q

2)
∣∣∣∣
CT

=
[
bB2 (Ẑ − 1)

+bB3 (Zs − 1)
]mB

mN
Gp

M (Q
2)

∣∣∣∣
LO

3q

. (47)
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3. Meson-cloud diagram (MC):

GB
E(Q

2)
∣∣∣∣
MC

=
9
400

( gA
πF

)2 ∫ ∞

0

dpp2
∫ 1

−1
dx

×
(
p2 + p

√
Q2x

)
FπNN (p2, Q2, x)

×tBE(p
2, Q2, x)

∣∣∣∣
MC

, (48)

GB
M (Q

2)
∣∣∣∣
MC

=
3
40

mB

( gA
πF

)2 ∫ ∞

0

dpp4
∫ 1

−1
dx

×(1− x2)FπNN (p2, Q2, x)

×tBM (p
2, Q2, x)

∣∣∣∣
MC

, (49)

where

FπNN (p2, Q2, x) = FπNN (p2)FπNN (p2+),

tBE(p
2, Q2, x)

∣∣∣∣
MC

= aB4 C
11
π (p

2, Q2, x)

+aB5 C
11
K (p

2, Q2, x),

tBM (p
2, Q2, x)

∣∣∣∣
MC

= bB4 D
22
π (p

2, Q2, x)

+bB5 D
22
K (p

2, Q2, x), (50)

Dn1n2
Φ (p2, Q2, x) =

1
wn1
Φ (p2)wn2

Φ (p2+)
,

Cn1n2
Φ (p2, Q2, x) =

2Dn1n2
Φ (p2, Q2, x)

wn1
Φ (p2) + wn2

Φ (p2+)
,

p2± = p2 +Q2 ± 2p
√
Q2 .

4. Vertex-correction diagram (VC):

GB
E(Q

2)
∣∣∣∣
VC

= Gp
E(Q

2)
∣∣∣∣
LO

3q

9
200

( gA
πF

)2

×
∫ ∞

0

dpp4F 2πNN (p
2)tBE(p

2)
∣∣∣∣
VC

, (51)

GB
M (Q

2)
∣∣∣∣
VC

=
mB

mN
Gp

M (Q
2)

∣∣∣∣
LO

3q

9
200

( gA
πF

)2

×
∫ ∞

0

dpp4F 2πNN (p
2)tBM (p

2)
∣∣∣∣
VC

, (52)

where

tBE(p
2)

∣∣∣∣
VC

= aB6 Wπ(p2) + aB7 WK(p2)

+aB8 Wη(p2),

tBM (p
2)

∣∣∣∣
VC

= bB6 Wπ(p2) + bB7 WK(p2) (53)

+bB8 Wη(p2),

WΦ(p2) =
1

w3Φ(p2)
.

Table 3. The constants kB
i for the magnetic moment µB of

the baryon octet.

p n Σ+ Σ0 Σ− Λ Ξ0 Ξ− Σ0Λ

k1 26 21 24 24 24 30 9 -6 24

k2 16 21 50
3

14 22 0 25 32 18

k3 4 4 16
3

8 0 16 12 20 4

k4 11 −11 4 3 −4 −3 −1 1 −4
√

3

k5 4 −1 11 6 7 −6 −11 −10 −√
3

5. Meson-in-flight diagram (MF):

GB
E(Q

2)
∣∣∣∣
MF

≡ 0, (54)

GB
M (Q

2)
∣∣∣∣
MF

=
9
100

mB

( gA
πF

)2 ∫ ∞

0

dpp4

×
∫ 1

−1
dx(1− x2)FπNN (p2, Q2, x)

×tBM (p
2, Q2, x)

∣∣∣∣
MF

, (55)

where

tBM (p
2, Q2, x)

∣∣∣∣
MF

= bB9 D
22
π (p

2, Q2, x)

+bB10D
22
K (p

2, Q2, x). (56)

Due to the use of a static potential the meson-in-flight
diagram does not contribute to the charge baryon form
factors.

The magnetic moments µB of the baryon octet are given
by the expression (in units of the nucleon magneton µN )

µB = µLOB

[
1 + δ

(
bB2 + bB3 ε

)

− 1
400

( gA
πF

)2 ∫ ∞

0

dpp4FπNN (p2)

×
{
kB1
w3π

+
kB2
w3K

+
kB3
w3η

}]

+
mB

50

( gA
πF

)2 ∫ ∞

0

dpp4FπNN (p2)

×
{
kB4
w4π

+
kB5
w4K

}
, (57)

where

µLOB = bB1
mB

mN
Gp

M (0)
∣∣∣∣
LO

3q

= bB1
2mBρR

1 + 3
2ρ
2

(58)

is the leading-order contribution to the baryon magnetic
moment. The factor

δ = −m̂rRρ
2− 3

2ρ
2

(
1 + 3

2ρ
2
)2 (59)



S. Cheedket et al.: Electromagnetic form factors of the baryon octet in the perturbative chiral quark model 323

Table 4. Results for the magnetic moments µB of the baryon octet (in units of the nucleon magneton µN ).

3q 3q Meson loops Total Exp. [11]

[LO] [NLO + CT] [MC + VC + MF]

µp 1.80 ± 0.15 0.01 ± 0.03 0.79 ± 0.12 2.60 ± 0.03 2.793

µn −1.20 ± 0.10 −0.01 ± 0.02 −0.77 ± 0.12 −1.98 ± 0.02 −1.913

µΣ+ 2.28 ± 0.19 −0.04 ± 0.04 0.51 ± 0.11 2.75 ± 0.09 2.458 ± 0.010

µΣ0 0.76 ± 0.06 −0.05 ± 0.02 0.34 ± 0.07 1.05 ± 0.01 –

µΣ− −0.76 ± 0.06 −0.06 ± 0.01 −0.26 ± 0.02 −1.08 ± 0.05 −1.160 ± 0.025

µΛ −0.71 ± 0.06 0.15 ± 0.04 −0.33 ± 0.09 −0.89 ± 0.03 −0.613 ± 0.004

µΞ0 −1.69 ± 0.14 0.23 ± 0.09 −0.28 ± 0.11 −1.74 ± 0.03 −1.250 ± 0.014

µΞ− −0.85 ± 0.07 0.23 ± 0.06 −0.05 ± 0.07 −0.68 ± 0.01 −0.651 ± 0.003

|µΣ0Λ| 1.28 ± 0.11 0.01 ± 0.02 0.61 ± 0.09 1.89 ± 0.01 1.61 ± 0.08

Table 5. Results for the charge radii squared
〈
r2

E

〉B
of the baryon octet (in units of fm2).

3q 3q Meson loops Total Exp.

[LO] [NLO + CT] [MC + VC]〈
r2

E

〉p
0.60 ± 0.10 0.004 ± 0.004 0.12 ± 0.01 0.72 ± 0.09 0.76 ± 0.02 [11]〈

r2
E

〉n

GS
0 0 −0.043 ± 0.004 −0.043 ± 0.004〈

r2
E

〉n

ES
0 0 −0.068 ± 0.013 −0.068 ± 0.013〈

r2
E

〉n

Full
0 0 −0.111 ± 0.014 −0.111 ± 0.014 −0.116 ± 0.002 [11]〈

r2
E

〉Σ+

0.60 ± 0.10 0.07 ± 0.004 0.14 ± 0.004 0.81 ± 0.10 –〈
r2

E

〉Σ0

0 0.038 ± 0.010 0.012 ± 0.010 0.050 ± 0.010 –〈
r2

E

〉Σ−
0.60 ± 0.10 −0.04 ± 0.01 0.15 ± 0.03 0.71 ± 0.07 0.61 ± 0.21 [1]〈

r2
E

〉Λ
0 0.038 ± 0.010 0.012 ± 0.010 0.050 ± 0.010 –〈

r2
E

〉Ξ0

0 0.07 ± 0.02 0.07 ± 0.02 0.14 ± 0.02 –〈
r2

E

〉Ξ−
0.60 ± 0.10 −0.08 ± 0.03 0.10 ± 0.03 0.62 ± 0.07 –〈

r2
E

〉Σ0Λ
0 0 0 0 –

Table 6. Results for the magnetic radii squared
〈
r2

M

〉B
of the baryon octet (in units of fm2).

3q 3q Meson loops Total Exp.

[LO] [NLO + CT] [MC + VC + MF]〈
r2

M

〉p
0.37 ± 0.09 0.03 ± 0.001 0.34 ± 0.02 0.74 ± 0.07 0.74 ± 0.10 [12]〈

r2
M

〉n
0.33 ± 0.08 0.03 ± 0.002 0.43 ± 0.01 0.79 ± 0.07 0.76 ± 0.02 [13]〈

r2
M

〉Σ+

0.45 ± 0.10 0.02 ± 0.006 0.17 ± 0.02 0.64 ± 0.08 –〈
r2

M

〉Σ0

0.39 ± 0.10 −0.02 ± 0.01 0.32 ± 0.03 0.69 ± 0.07 –〈
r2

M

〉Σ−
0.38 ± 0.08 0.09 ± 0.01 0.31 ± 0.01 0.78 ± 0.07 –〈

r2
M

〉Λ
0.44 ± 0.12 −0.14 ± 0.06 0.35 ± 0.07 0.65 ± 0.05 –〈

r2
M

〉Ξ0

0.52 ± 0.12 −0.01 ± 0.04 0.03 ± 0.05 0.54 ± 0.06 –〈
r2

M

〉Ξ−
0.67 ± 0.17 −0.31 ± 0.12 −0.04 ± 0.13 0.32 ± 0.04 –〈

r2
M

〉Σ0Λ
0.36 ± 0.09 0.03 ± 0.001 0.36 ± 0.02 0.75 ± 0.07 –
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defines the NLO correction to the baryon magnetic mo-
ments due to the modification of the quark wave function
(see eq. (15)). The constants kBi are given in table 3.

4 Numerical results

Numerical results for the magnetic moments, charge and
magnetic radii of the baryon octet are given in tables 4,
5 and 6, respectively. The total results for the electro-
magnetic properties are separated into three parts: 1) the
leading-order (3q [LO]) result due to the three-quark core
contribution; 2) the corrections (3q [NLO + CT]) to the
three-quark core contribution due to the renormalization
of the quark WF (NLO) and the three-quark counterterm
(CT) and 3) the effects of meson loops. The meson loop
contributions include the meson-cloud (MC), the vertex-
correction (VC), and the meson-in-flight (MF) diagrams.
Experimental data are given in the last column of the ta-
bles. As was already mentioned, for a static potential the
meson-in-flight diagram does not contribute to the baryon
charge form factor. The range of our numerical results is
due to variation of the size parameter R in the region 0.55–
0.65 fm. The mesonic contributions to the baryon mag-
netic moments are of the order of 20–40% (except for Ξ−
they contribute only 3%). Hence, meson-cloud corrections
generate a significant influence on baryon magnetic mo-
ments. Our results for the baryon magnetic moments are
in good agreement with the experimental data. Mesonic
contributions to the charge radii of charged baryons are
also of 20–40% (except for Ξ−, where they contribute less
than 1%). We predict that

〈
r2E

〉Σ+

>
〈
r2E

〉p
>

〈
r2E

〉Σ−
>

〈
r2E

〉Ξ−
. (60)

Our results for the proton and Σ− charge radii squared
are in good agreement with the experimental data. In the
isospin limit, the three-quark core does not contribute
to the charge radii of neutral baryons. Only the meson
cloud generates a non-vanishing value for the charge radii
of these baryons. Since we restrict the quark propagator
to the ground-state contribution, the meson-cloud effects
give a small value for the neutron charge radius squared.
We found that the result of the neutron charge radius can
be improved by including excited states in the quark prop-
agator. In table 5 we give a comparison of our results for
the neutron charge radius squared with the experimental
value. The value, where the quark propagator is restricted
to the ground state, is indicated by

〈
r2E

〉n(GS). Contri-
butions from excited states (we have used 1p1/2, 1p3/2,
1d3/2, 1d5/2 and 2s1/2) are denoted by

〈
r2E

〉n(ES). Ex-
emplified for the neutron charge radius, we conclude that
excited-state contributions can also generate sizable cor-
rections when the LO results are vanishing. This result
should be viewed as a first indication that excited-quark-
state contributions are influential in ultimately determin-
ing observables which are dominated by loop diagrams.
At this level a truncation following the 2s1/2-state is not
necessarily justified by convergence arguments. An addi-
tional scale set by the finite size of the mesons should be

Fig. 2. The charge form factors GB
E(Q2) for B = p, Σ+, Σ−

and Ξ− for R = 0.6 fm compared to the dipole fit GD(Q2).
For Σ− and Ξ−, the absolute value of GB

E(Q2) is shown.

introduced to restrict the contribution of intermediate ex-
cited quark states. In a further effort we intend to improve
our calculations to the whole baryon octet by adding the
excited states to the quark propagator and investigating
its convergence properties. For Σ0, Λ and Ξ0 we predict
that their charge radii squared have a positive sign and
follow the pattern

〈
r2E

〉Ξ0

>
〈
r2E

〉Σ0

,
〈
r2E

〉Λ
. (61)

The mesons also play a very important role for the baryon
magnetic radii where they contribute up to 50%. Our re-
sult for the magnetic radius of Ξ− is quite small com-
pared to the other’s because the meson-cloud contribution
comes with a negative sign. Results for the magnetic radii
squared of the proton and neutron are in good agreement
with the experimental data.

The Q2-dependence (up to 0.4 GeV2) of the charge
and magnetic form factors are shown in figs. 2, 3, 4, 5
and 6. Due to the lack of covariance, the form factors can
be expected to be reasonable up to Q2 < p2 = 0.4 GeV2,
where p is the typical three-momentum transfer which
defines the region where relativistic effects≤ 10% or where
the following inequality p2/(4m2N ) < 0.1 is fulfilled. In
fig. 3 we compare our result for the neutron charge form
factor to the experimental data varying the parameter R.
Results are given for the case where the quark propagator
is restricted to the ground state. We separate the graphs
for the charged and neutral baryons by using a proper
normalization and compare to the experimental dipole fit,
originally obtained for nucleons given by

GD(Q2) =
1

(1 +Q2/0.71 GeV2)2
. (62)

There are also detailed analyses of the electromagnetic
properties (magnetic moments, radii, form factors) of the
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Fig. 3. The neutron charge form factors Gn
E(Q2) for different

values of R = 0.55, 0.6, and 0.65 fm. Experimental data are
taken from [14] (MAMI-1), [15] (MAMI-2), [16] (MAMI-3),
[17] (MAMI-4), and [18] (MIT).

Fig. 4. The charge form factors GB
E(Q2) for B = n, Σ0, Λ and

Ξ0 at R = 0.6 fm.

baryon octet in the literature. Because we are in the po-
sition to improve our formalism, we relegate a detailed
comparison to other theoretical approaches in our forth-
coming paper. We just mention the recent papers [19,20]
where a comprehensive analysis of baryon form factors
(nucleons [19] and baryon octet [20]) was performed in the
context of relativistic baryon chiral perturbation theory.

5 Summary

We apply the PCQM to calculate the charge and mag-
netic form factors of the baryon octet up to one-loop per-
turbation theory. Furthermore, we analyze the magnetic
moments, charge and magnetic radii. Since the PCQM
is a static model, Lorentz covariance cannot be fulfilled.

Fig. 5. The normalized magnetic form factors GB
M (Q2)/µB for

B = p, Σ+, Σ− and Ξ− at R = 0.6 fm in comparison to the
dipole fit GD(Q2).

Fig. 6. The normalized magnetic form factors GB
M (Q2)/µB for

B = n, Σ0, Λ and Ξ0 at R = 0.6 fm as compared to the dipole
fit GD(Q2).

Approximate techniques to account for Galilei invariance
and Lorentz boost effects were shown to change the tree
level results by about 10% [10]. Higher-order, that is loop
contributions, are less sensitive to these corrections. We
demonstrated that meson-cloud corrections play a sizable
and important role in reproducing the experimental values
both for magnetic moments and for the charge and mag-
netic radii. The magnetic moments of the baryon octet
can be reproduced rather well. Also, charge and magnetic
radii are explained with the PCQM, when the LO con-
tribution, that is the valence quarks, dominates. As soon
as the LO result vanishes, meson-cloud corrections which
then control the observable tend to be sensitively influ-
enced by the possible contributions of excited states in the
loop diagrams. We demonstrated this effect for the case
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of the neutron charge radius, where the inclusion of the
excited states tends to improve the model result. Further
investigations, which concern the role of excited states in
calculating baryon observables are currently in progress.

In order to improve our model, we are currently pur-
suing the following aspects. First, we intend to improve
our calculations to the whole baryon octet by adding the
excited states to the quark propagator and investigating
its convergence properties. Second, in order to improve
the Q2-dependence of baryonic form factors, we intend
to include short-distance effects in addition to the light-
meson–cloud contributions which are important only at
very low Q2. These short-distance effects might be taken
into account by the use of low-energy constants (LECs) as
in chiral perturbation theory or by the use of additional
vector meson contributions as it is well known to improve
the intermediate Q2-dependence.
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of the DAAD (Grant No. a/00/27860) and Thailand Research
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Appendix A. Solutions of the Dirac equation
for the effective potential

We state here again the variational Gaussian ansatz in
eq. (4):

u0(x) = N exp
[
− x 2

2R2

] (
1

iρσ · x/R
)

χs χf χc . (A.1)

This ansatz, when put back into the Dirac equation, re-
stricts the form of the effective potential Veff(r) to be (note
that r = |x|)

Veff(r) = S(r) + γ0V (r) , (A.2)

where the scalar S(r) and time-like vector V (r) parts are
given by

S(r) = M1 + c1r
2,

V (r) = M2 + c2r
2, (A.3)

in which M1, M2, c1 and c2 are

M1 =
1 − 3ρ2

2 ρR
, M2 = E0 − 1 + 3ρ2

2 ρR
,

c1 ≡ c2 =
ρ

2R3
. (A.4)

This specific choice of Veff(r) from the variational Gaus-
sian ansatz will be used in obtaining the quark WF in any
state. The quark WF uα(x) in state α with eigenenergy
Eα satisfies the Dirac equation

[−iα · ∇+ βS(r) + V (r)− Eα]uα(x) = 0. (A.5)

Due to our choice of the Veff(r) the Dirac equation can be
solved analytically and the solutions of the Dirac spinor
uα(x) to eq. (A.5) can be written in the form [21]

uα(x) = Nα

(
gα(r)

iσ · x̂fα(r)
)
Yα(x̂)χfχc. (A.6)

The radial functions gα(r) and fα(r) have the explicit form

gα(r) =
(

r

Rα

)l

L
l+1/2
n−1

(
r2

R2α

)
e
− r2

2R2
α , (A.7)

where for j = l + 1
2

fα(r) = ρα

(
r

Rα

)l+1[
L
l+3/2
n−1

(
r2

R2α

)

+ L
l+3/2
n−2

(
r2

R2α

)]
e
− r2

2R2
α , (A.8)

and for j = l − 1
2

fα(r) = −ρα

(
r

Rα

)l−1[(
n+ l − 1

2

)
L
l−1/2
n−1

(
r2

R2α

)

+ nLl−1/2
n

(
r2

R2α

)]
e
− r2

2R2
α . (A.9)

The label α = (nljm) characterizes the state with princi-
pal quantum number n = 1, 2, 3, . . . , orbital angular mo-
mentum l, total angular momentum j = l ± 1

2 and pro-
jection m. Due to the quadratic nature of the potential,
the radial wave functions contain the associated Laguerre
polynomials Lk

n(x) with

Lk
n(x) =

n∑
m=0

(−1)m (n+ k)!
(n−m)!(k +m)!m!

xm. (A.10)

The angular dependence Yα(x̂) ≡ Ylmj(x̂) is defined by

Ylmj(x̂) =
∑

ml,ms

(lml
1
2
ms|jm)Ylml

(x̂)χ 1
2ms

(A.11)

where Ylml
(x̂) is the usual spherical harmonic. χf and χc

are the flavor and color part of the Dirac spinor, respec-
tively.

The coefficients Rα and ρα which belong to the α-state
are of the form

Rα = R(1 +∆EαρR)−1/4, (A.12)

ρα = ρ

(
Rα

R

)3

and are related to the Gaussian parameters ρ, R of
eq. (A.1). Here we define ∆Eα = Eα − E0 to be the differ-
ence between the energy of state α and the ground state.
∆Eα depends on the quantum numbers n and l and is
related to the parameters ρ and R by
(
∆Eα + 3ρ

R

)2(
∆Eα + 1

ρR

)
=

ρ

R3
(4n+2l−1)2. (A.13)
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The normalization condition is
∞∫
0

d3xu†
α(x)uα(x) = 1 ; (A.14)

with this condition the normalization constant Nα is of
the form

Nα =
[
2−2(n+l+1/2)π1/2R3α

(2n+ 2l)!
(n+ l)!(n− 1)!

×
{
1 + ρ2α

(
2n+ l − 1

2

)} ]−1/2
. (A.15)
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